Universal Nature of the Nonlinear Stage of Modulational Instability.

نویسندگان

  • Gino Biondini
  • Dionyssios Mantzavinos
چکیده

We characterize the nonlinear stage of modulational instability (MI) by studying the longtime asymptotics of the focusing nonlinear Schrödinger (NLS) equation on the infinite line with initial conditions tending to constant values at infinity. Asymptotically in time, the spatial domain divides into three regions: a far left and a far right field, in which the solution is approximately equal to its initial value, and a central region in which the solution has oscillatory behavior described by slow modulations of the periodic traveling wave solutions of the focusing NLS equation. These results demonstrate that the asymptotic stage of MI is universal since the behavior of a large class of perturbations characterized by a continuous spectrum is described by the same asymptotic state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons

  Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...

متن کامل

Solution and stability analysis of coupled nonlinear Schrodinger equations

We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...

متن کامل

Landau damping and coherent structures in narrow-banded 1+1 deep water gravity waves.

We study the modulational instability in surface gravity waves with random phase spectra. Starting from the nonlinear Schrödinger equation and using the Wigner-Moyal transform, we study the stability of the narrow-banded approximation of a typical wind-wave spectrum, i.e., the JONSWAP spectrum. By performing numerical simulations of the nonlinear Schrödinger equation we show that in the unstabl...

متن کامل

Modulational Instability of the Higher-Order Nonlinear Schrödinger Equation with Fourth-Order Dispersion and Quintic Nonlinear Terms

The modulational instability of the higher-order nonlinear Schrödinger equation with fourth-order dispersion and quintic nonlinear terms, describing the propagation of extremely short pulses, is investigated. Several types of gains by modulational instability are shown to exist in both the anomalous and normal dispersion regimes depending on the sign and strength of the higher-order nonlinear t...

متن کامل

The Integrable Nature of Modulational Instability

We investigate the nonlinear stage of the modulational (or Benjamin–Feir) instability by characterizing the initial value problem for the focusing nonlinear Schrödinger (NLS) equation with nonzero boundary conditions (NZBC) at infinity. We do so using the recently formulated inverse scattering transform (IST) for this problem. While the linearization of the NLS equation ceases to be valid when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 4  شماره 

صفحات  -

تاریخ انتشار 2016